14th August – Rooting AI in ethics

Let us look at the theoretical basis of understanding ethics with an example. A cigarette company wants to decide on launching a new product, whose primary feature is reduced tar. It plans to tell customers that the lower tar content is a ‘healthier’ option. This is only half true. In reality, a smoker may have to inhale more frequently from a cigarette with lower tar to get the flavour of a regular cigarette.

Rooting AI in ethics

Analysing the ethical perspective –

Let us analyse this from three dominant ethical perspectives –

  • First, the egoistic perspective states that we take actions that result in the greatest good for oneself. The cigarette company is likely to sell more cigarettes, assuming that the new product wins over more new customers. From an egoistic perspective, hence, the company should launch the new cigarette.
  • Second, the utilitarian perspective states that we take actions that result in the greatest good for all. Launching the new cigarette is good for the company. The new brand of cigarette also provides a ‘healthier’ choice for smokers. And more choice is good for customers. Hence, the company should launch the product. The egoistic and utilitarian perspectives together form the ‘teleological perspective’, where the focus is on the results that achieve the greatest good.
  • Third, the ‘deontological perspective’, on the other hand, focusses more on the intention of the maker than the results. The company deceives the customer when it says that the new cigarette is ‘healthier’. Knowingly endangering the health of humans is not an ethical intention. So, the company should not launch this cigarette.

Facial recognition technology

  • From a deontological perspective, the system should have been rejected as its intention probably was not to identify people from all races, which would have been the most ethical aim to have. Imagine the implications of being labelled a threat to public safety just because limited data based on one’s skin colour was used to train the AI system.
  • The ethical basis of AI, for the most part, rests outside the algorithm. The bias is in the data used to train the algorithm. It stems from our own flawed historical and cultural perspectives — sometimes unconscious — that contaminate the data.

Way forward –

With the proliferation of AI, it is important for us to know the ethical basis of every AI system that we use or is used on us. An ethical basis resting on both teleological and deontological perspectives gives us more faith in a system. Sometimes, even an inclusive intention may need careful scrutiny.

Conclusion –

Reports suggest that the NITI Aayog is ready with a ₹7,500 crore plan to invest in building a national capability and infrastructure. The transformative capability of AI in India is huge and must be rooted in an egalitarian ethical basis. Any institutional framework for AI should have a multidisciplinary and multi-stakeholder approach, and have an explicit focus on the ethical basis.

SourceThe Hindu

Also read: 13th August – A point to ponder over in the POCSO Bill